CCNA Modulo1 Cables

Ondas
Las ondas sinoidales varían continuamente, o sea que no existen dos puntos adyacentes en el gráfico con el mismo valor.
Los gráficos de las ondas rectangulares no varían continuamente en el tiempo. La onda conserva un valor durante un tiempo, y luego cambia repentinamente a otro valor. Este valor se conserva durante cierto tiempo, y luego cambia rápidamente de vuelta a su valor original. Las ondas rectangulares representan señales digitales, o pulsos. Como ocurre con todas las ondas, las ondas rectangulares se pueden describir en función de su amplitud, período y frecuencia. 
Todos los sistemas de comunicación tienen cierta cantidad de ruido. Aunque es imposible eliminar el ruido, se pueden minimizar sus efectos si se comprenden los orígenes del ruido. Son muchas las posibles fuentes de ruido: 
Cables cercanos que transportan señales de datos 
Interferencia de radiofrecuencia (RFI), que es el ruido de otras señales que se están transmitiendo en las proximidades 
Interferencia electromagnética (EMI), que es el ruido que proviene de fuentes cercanas como motores y luces.

Ruido de láser en la transmisión o recepción de una señal óptica 
El ancho de banda analógico normalmente se refiere a la gama de frecuencias de un sistema electrónico analógico. El ancho de banda analógico se podría utilizar para describir la gama de frecuencias transmitidas por una estación de radio o un amplificador electrónico. La unidad de medida para el ancho de banda analógico es el hercio, al igual que la unidad de frecuencia. 
El ancho de banda digital mide la cantidad de información que puede fluir desde un punto hacia otro en un período de tiempo determinado. La unidad de medida fundamental para el ancho de banda digital es bits por segundo (bps). Como las LAN son capaces de velocidades de miles o millones de bits por segundo, la medida se expresa en kbps o Mbps. Los medios físicos, las tecnologías actuales y las leyes de la física limitan el ancho de banda. 

 

Cables

Coaxial
El cable coaxial es un cable eléctrico formado por dos conductores concéntricos, uno central o núcleo, formado por un hilo sólido o trenzado de cobre (llamado positivo o vivo), y uno exterior en forma de tubo o vaina, y formado por una malla trenzada de cobre o aluminio o bien por un tubo, en caso de cables semirrígidos. Este último produce un efecto de blindaje y además sirve como retorno de las corrientes. El primero está separado del segundo por una capa aislante llamada dieléctrico. De la calidad del dieléctrico dependerá principalmente la calidad del cable. Y todo el conjunto puede estar protegido por una cubierta aislante. 

En las aplicaciones LAN, el blindaje trenzado está conectado a tierra eléctricamente para proteger el conductor interno del ruido eléctrico externo. El blindaje contribuye además a eliminar la pérdida de la señal, evitando que la señal transmitida se escape del cable. 

Existen dos tipos de cables de par trenzado: par trenzado blindado (STP) y par trenzado no blindado (UTP) 

Tipos de conexionado
Los cables UTP forman los segmentos de Ethernet y pueden ser cables rectos o cables cruzados dependiendo de su utilización.
1.- Cable recto (pin a pin)
Estos cables conectan un concentrador a un nodo de red (Hub, Nodo). Todos los pares de colores están conectados en las mismas posiciones en ambos extremos. La razón es que el concentrador es el que realiza el cruce de la señal. Para hacer un cable cruzado existen 2 ramas: 568B, 568A. Una se utilizará en uno de los extremos del cable y la otra norma en el otro extremo.
2.- Cable cruzado (cross-over)
Este tipo de cable se utiliza cuando se conectan elementos del mismo tipo, dos enrutadores, dos concentradores… También se utiliza cuando conectamos 2 ordenadores directamente, sin que haya enrutadores o algún elemento a mayores.
Para saber qué tipo de cable se está utilizando (recto o cruzado) solo hay una manera de hacerlo, y es utilizando un instrumento adecuado de medida.
Tipos de cable

Hay varios tipos de cables y cada uno posee unas ventajas y unos inconvenientes, esto quiere decir que ninguno de estos tipos de cables es mejor que otro. Sobre todo se diferencian en su ancho de banda, en como les afectan las interferencias electromagnéticas.
1.- Apantallado (STP/ Shielded Twisted Pair): Este tipo de cable se caracteriza porque cada par va recubierto por una maya conductora, la cual es mucho más protectora y de mucha mas calidad que la utilizada en el UTP. La protección de este cable ante perturbaciones es mucho mayor a la que presenta el UTP. También es más costoso. Sus desventajas, son que es un cable caro, es recio/fuerte. Este tipo de cable se suele utilizar en instalaciones de procesos de datos.
2.- No apantallado (UTP/ Unshielded twisted pair): Es el cable más simple. En comparación con el apantallado este, es más barato , además de ser fácil de doblar y pesar poco. Las desventajas de este tipo de cable, es que cuando se somete a altas temperaturas no es tan resistente a las interferencias del medio ambiente.
Los servicios como: Red de Area Local ISO 802.3 (Ethernet) y ISO 802.5 (Token Ring), telefonía digital,… son algunos de los que puede soportar este tipo de cable.

2.1.- Categorías:
Hay varias categorías dentro de los cables UTP, las cuales se diferencian en su atenuación, impedancia y capacidad de línea:
Categoría 1: (cable UTP tradicional) Alcanza como máximo una velocidad de 100 Kbps. Se utiliza en redes telefónicas.
Categoría 2: Alcanza una velocidad de transimisión de 4 Mbps . Tiene cuatro pares trenzados de hilo de cobre.

Categoría 3: 16 Mbps puede alcanzar como máximo en la transmisión. Tiene un ancho de banda de 16 MHz.
Categoría 4: Velocidad de transmisión de hasta 20 Mbps, con un ancho de banda de 20 MHz.
Categoría 5: Velocidad de hasta 100 Mbps, con un ancho de banda de 100 MHz. Se utiliza en las comunicaciones de tipo LAN. La atenuación de este cable depende de la velocidad.

  • Velocidad de 4 Mbps -- Atenuación de 13 dB
  • Velocidad de 10 Mbps -- Atenuación de 20 dB
  • Velocidad de 16 Mbps -- Atenuación de 25 dB
  • Velocidad de 100 Mbps -- Atenuación de 67 dB

Categoría 5e: Igual que la anterior pero mejorada, ya que produce menos atenuación. Puede alcanzar velocidad de transmision de 1Gbs con electronica especial.
Categoría 6: Tiene un ancho de banda de 250 MHz. Puede alcanzar velocidad de transmision de 1Gbs
Categoría 6A: Tiene un ancho de banda de 500 MHz. Puede alcanzar velocidad de transmision de 10Gbs
Categoría 7: Esta categoría esta aprobada para los elementos que conforman la clase F en el estandar internacional ISO 11801. Tiene un ancho de banda de 600 MHz. Puede alcanzar velocidades de transmision superiores a 10Gbs

Se denomina atenuación de una señal, sea esta acústica, eléctrica u óptica, a la pérdida de potencia sufrida por la misma al transitar por cualquier medio de transmisión.
Así, si introducimos una señal eléctrica con una potencia P1 en un circuito pasivo, como puede ser un cable, esta sufrirá una atenuación y al final de dicho circuito obtendremos una potencia P2. La atenuación (a) será igual a la diferencia entre ambas potencias.

Diafonía
se dice que entre dos circuitos existe diafonía, denominada en inglés Crosstalk (XT), cuando parte de las señales presentes en uno de ellos, considerado perturbador, aparece en el otro, considerado perturbado.
La diafonía, en el caso de cables de pares trenzados se presenta generalmente debido a acoplamientos magnéticos entre los elementos que componen los circuitos perturbador y perturbado o como consecuencia de desequilibrios de admitancia entre los hilos de ambos circuitos.
La diafonía se mide como la atenuación existente entre el circuito perturbador y el perturbado, por lo que también se denomina atenuación de diafonía.

Trenzar un par de hilos en un cable, contribuye además a reducir la diafonía en las señales de datos o de ruido provenientes de un par de hilos adyacentes. En las categorías de UTP más altas, hacen falta más trenzas en cada par de hilos del cable para minimizar la diafonía a frecuencias de transmisión elevadas. Al colocar conectores en los extremos de los cables UTP, se debe minimizar el destrenzado de los pares de hilos para asegurar una comunicación confiable en la LAN. 

Los diez parámetros de prueba principales que se deben verificar para que un enlace de cable cumpla con los estándares TIA/EIA son:

  • Mapa de cableado
  • Pérdida de inserción
  • Paradiafonía (NEXT)
  • Paradiafonía de suma de potencia (PSNEXT)
  • Telediafonía del mismo nivel (ELFEXT)
  • Telediafonía del mismo nivel de suma de potencia (PSELFEXT)
  • Pérdida de retorno
  • Retardo de propagación
  • Longitud del cable
  • Sesgo de retardo

Fibra Optica

La fibra óptica es una guía de ondas dieléctrica que opera a frecuencias ópticas.
Cada filamento consta de un núcleo central de plástico o cristal (óxido de silicio y germanio) con un alto índice de refracción, rodeado de una capa de un material similar con un índice de refracción ligeramente menor. Cuando la luz llega a una superficie que limita con un índice de refracción menor, se refleja en gran parte, cuanto mayor sea la diferencia de índices y mayor el ángulo de incidencia, se habla entonces de reflexión interna total.
Así, en el interior de una fibra óptica, la luz se va reflejando contra las paredes en ángulos muy abiertos, de tal forma que prácticamente avanza por su centro. De este modo, se pueden guiar las señales luminosas sin pérdidas por largas distancias.

Su funcionamiento se basa en transmitir por el núcleo de la fibra un haz de luz, tal que este no atraviese el núcleo, sino que se refleje y se siga propagando. Esto se consigue si el índice de refracción del núcleo es mayor al índice de refracción del revestimiento, y también si el ángulo de incidencia es superior al ángulo limite. 

Ventajas
Su ancho de banda es muy grande (teóricamente de hasta 1 THz), mediante técnicas de multiplexación por división de frecuencias (WDM/DWDM), que permiten enviar hasta 100 haces de luz (cada uno con una longitud de onda diferente) a una velocidad de 10 Gb/s cada uno por una misma fibra, se llegan a obtener velocidades de transmisión totales de 10 Tb/s. 
Es inmune totalmente a las interferencias electromagnéticas. 

Multimodo
Una fibra multimodo es aquella que puede propagar más de un modo de luz. Una fibra multimodo puede tener más de mil modos de propagación de luz. Las fibras multimodo se usan comúnmente en aplicaciones de corta distancia, menores a 1 km; es simple de diseñar y económico.
Su distancia máxima es de 2 km y usan diodos láser de baja intensidad.

Monomodo
Una fibra monomodo es una fibra óptica en la que sólo se propaga un modo de luz. Se logra reduciendo el diámetro del núcleo de la fibra hasta un tamaño (8,3 a 10 micrones) que sólo permite un modo de propagación. Su transmisión es paralela al eje de la fibra. A diferencia de las fibras multimodo, las fibras monomodo permiten alcanzar grandes distancias (hasta 100 km máximo, mediante un láser de alta intensidad) y transmitir elevadas tasas de información (decenas de Gb/s). 

Los conectores más comunes usados en la fibra óptica para redes de área local son los conectores ST y SC.
El conector SC (Straight Connection) es un conector de inserción directa que suele utilizarse en conmutadores Ethernet de tipo Gigabit. El conector ST (Straight Tip) es un conector similar al SC, pero requiere un giro del conector para su inserción, de modo similar a los conectores coaxiales.

Tags: 

Predefined Sections

Seccion Cisco   Seccion Linux   Seccion Microsoft   Seccion Redes   Seccion Seguridad   Seccion General